publications

publications by categories in reversed chronological order. generated by jekyll-scholar.

2024

  1. rounding-sequences-graphs.png
    On the residues of rounded fractions with a common numerator
    N. Dent, and C. Shor
    Journal of Integer Sequences, 2024

2023

  1. reflective-paper-image.png
    Reflective numerical semigroups
    Caleb M. Shor
    Albanian J. Math., 2023

2022

  1. Equidistribution of numerical semigroup gaps modulo \(m \)
    Caleb M. Shor
    Discrete Mathematics, 2022

2019

  1. Characterizations of numerical semigroup complements via Apéry sets
    T. Alden Gassert, and Caleb M. Shor
    Semigroup Forum, 2019
  2. On free numerical semigroups and the construction of minimal telescopic sequences
    Caleb M. Shor
    Journal of Integer Sequences, 2019

2018

  1. Higher-order Weierstrass weights of branch points on superelliptic curves
    Caleb M. Shor
    In Higher genus curves in mathematical physics and arithmetic geometry , 2018

2017

  1. 2-Weierstrass points of genus 3 hyperelliptic curves with extra involutions
    Tony Shaska, and Caleb M. Shor
    Comm. Algebra, 2017
  2. On Sylvester sums of compound sequence semigroup complements
    T. Alden Gassert, and Caleb M. Shor
    J. Number Theory, 2017

2015

  1. Weierstrass points of superelliptic curves
    T. Shaska, and C. Shor
    In Advances on Superelliptic Curves and Their Applications , 2015
  2. Theta functions and symmetric weight enumerators for codes over imaginary quadratic fields
    T. Shaska, and C. Shor
    Des. Codes Cryptogr., 2015

2014

  1. On Jacobians of curves with superelliptic components
    L. Beshaj, T. Shaska, and C. Shor
    In Riemann and Klein surfaces, automorphisms, symmetries and moduli spaces , 2014

2011

  1. Genus calculations for towers of functions fields arising from equations of \( C_ab \) curves
    Caleb M. Shor
    Albanian J. Math., 2011

2010

  1. Codes over rings of size \(p^2 \) and lattices over imaginary quadratic fields
    T. ShaskaC. Shor, and S. Wijesiri
    Finite Fields Appl., 2010

2007

  1. Codes over \( \mathbb F_p^2  and \( \mathbb F_p\times\mathbb F_p \), lattices, and theta functions
    T. Shaska, and C. Shor
    In Advances in coding theory and cryptography , 2007
  2. On the construction of codes from an asymptotically good tower over \( \mathbb F_8 \)
    Caleb McKinley Shor
    Serdica J. Comput., 2007

2005

  1. On towers of function fields and the construction of the corresponding Goppa codes
    Caleb M. Shor
    2005
    Dissertation (Ph.D.)–Boston University